EN
师资队伍
所在位置: 首页 > 师资队伍 > 师资队伍 > 按姓氏 > W

专家详情页

王付勇

建筑环境与能源工程系

学位职称:博士/教授/博士生导师

办公电话:13811055684

办公地点:土木楼1104

Email:wangfuyong@ustb.edu.cn


学习工作简历:

王付勇,2009年毕业于中国石油大学(华东)油气储运专业,获学士学位;2013年毕业于英国赫瑞-瓦特大学石油工程专业,获得博士学位,2016年在美国斯坦福大学做访问学者。2015年入选北京市优秀人才培养资助计划,2022年入选中国科协“海智计划”特聘专家,入选2024年度全球前2%顶尖科学家榜单(World's Top 2% Scientists)。

研究领域:

1. 多孔介质渗流力学

2. 非常规油气开发与提高采收率

3. 人工智能与能源交叉领域

4. 多相流体力学

科研项目:

1. 国家自然科学基金面上项目,2019.01-2022.12,项目负责人

2. 国家自然科学基金青年基金项目,2017.01-2019.12,项目负责人

3. 北京市自然科学基金,2016.01-2017.12,项目负责人

4. 北京市优秀人才培养资助项目,2016.01-2017.06,项目负责人

5. 中国石油天然气管道通信电力工程有限公司,2023年基于多元信息的管道周边事件威胁度评价技术服务项目,2023.08-2024.05,项目负责人

6. 中石化石油勘探开发研究院,陆相页岩油微观多尺度渗流机理与数学表征研究,2022.08-2024.07,项目负责人

7. 中石化胜利油田,基于多源数据与机器学习的高含水油藏流场调整技术研究,2022.09-2023.12,项目负责人

8. 中石化石油勘探开发研究院,基于深度学习的测井岩相自动识别及油藏自动历史拟合方法,2019.01-2019.12,项目负责人

9. 中国石油天然气股份有限公司勘探开发研究院,重力稳定气驱多相流动力学机制及主控因素研究,2020.05-2020.12,项目负责人

10. 中石油长庆油田科研服务项目,2019年致密储层数字岩心测试,2019.06-2020.12,项目负责人

11. 中石油勘探开发研究院科研服务项目,储层微观孔隙结构特征测试,2019.11-2020.11,项目负责人

12. 中石化石油勘探开发研究院外协项目,碳酸盐岩油藏孔隙结构与渗流机理研究 2014.10-20.15.06,项目负责人

论文:

1. Molecular dynamics investigation of shale oil occurrence and adsorption in nanopores: Unveiling wettability and influencing factors. Chemical Engineering Journal. 2024, 481: 148380

2. Comprehensive pore structure characterization and permeability prediction of carbonate reservoirs using high-pressure mercury intrusion and X-ray CT. Carbonates and evaporites. 2024, 39(2): 18.

3. Image segmentation and flow prediction of digital rock with U-net network. Advances in Water Resources, 2023, 172: 104384.

4. A comprehensive mathematical model for spontaneous imbibition in oil-saturated fractured tight sandstones: Incorporating fracture distribution, displacement pressure, gravity, and buoyancy effects. Physics of Fluids. 2023, 35(6).

5. Prediction of gas–water relative permeability in tight rock from movable fluid distribution with nuclear magnetic resonance. Physics of Fluids, 2023, 35(3): 33609.

6. Experimental study of surfactant-enhanced spontaneous imbibition in fractured tight sandstone reservoirs: The effect of fracture distribution. Petroleum Science. 2023, 20(1): 370-381.

7. Experimental Mechanism for Enhancing Oil Recovery by Spontaneous Imbibition with Surfactants in a Tight Sandstone Oil Reservoir. Energy & Fuels. 2023, 37(12): 8180-8189.

8. Experimental Study of Surfactant-Aided Dynamic Spontaneous Imbibition in Tight Oil Reservoirs: The Effect of Fluid Flow, Displacement Pressure, Temperature, and Fracture. Energy & Fuels. 2023, 37(23): 18632-18641.

9. A capillary bundle model for the forced imbibition in the shale matrix with dual‐wettability. The Canadian Journal of Chemical Engineering. 2023, 101(4): 2330-2340.

10. Pore structure analysis and permeability prediction of shale oil reservoirs with HPMI and NMR: A case study of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, NW China. Journal of Petroleum Science and Engineering. 2022, 214: 110503.

11. Experimental study of spontaneous imbibition and CO2 huff and puff in shale oil reservoirs with NMR. Journal of Petroleum Science and Engineering, 2022, 209: 109883.

12. A mathematical model of surfactant spontaneous imbibition in a tight oil matrix with diffusion and adsorption. Langmuir, 2021, 37(29): 8789-8800.

13. Mathematical modeling of gravity and buoyancy effect on low IFT spontaneous imbibition in tight oil reservoirs, AIChE Journal, 2021, 67(9): e17332.

14. Mathematical model of the spontaneous imbibition of water into oil-saturated fractured porous media with gravity. Chemical Engineering Science. 2021: 116317.

15. Mathematical model of liquid spontaneous imbibition into gas-saturated porous media with dynamic contact angle and gravity. Chemical Engineering Science. 2021, 229: 116139.

16. 3D tight sandstone digital rock reconstruction with deep learning. Journal of Petroleum Science and Engineering, 2021, 207: 109020.

17. Fractal Analysis of Tight Sandstone Petrophysical Properties in Unconventional Oil Reservoirs with NMR and Rate-Controlled Porosimetry. Energy & Fuels, 2021, 35(5): 3753-3765.

18. A fractal model for apparent liquid permeability of dual wettability shale coupling boundary layer and slip effect. Fractals, 2021, 29(04), 2150088.

19. Experimental Study and Mathematical Model of Residual Oil Distribution during Gas Flooding in Unconventional Oil Reservoirs with Low-Field NMR. Energy & Fuels, 2021, 35(9): 7799-7807.

20. Fractal and multifractal characteristics of shale nanopores. Results in Physics, 2021, 25: 104277.

21. Effect of gravity on spontaneous imbibition of the wetting phase into gas-saturated tortuous fractured porous media: Analytical solution and diagnostic plot. Advances in Water Resources. 2020, 142: 103657.

22. Effect of tortuosity on the stress-dependent permeability of tight sandstones: Analytical modelling and experimentation. Marine and Petroleum Geology. 2020, 120: 104524.

23. Multifractal characteristics of shale and tight sandstone pore structures with nitrogen adsorption and nuclear magnetic resonance. Petroleum Science. 2020, 17(5): 1209-1220.

24. Novel Insights into the Movable Fluid Distribution in Tight Sandstones Using Nuclear Magnetic Resonance and Rate-Controlled Porosimetry. Natural Resources Research. 2020, 29(5): 3351-3361.

25. A fractal permeability model for 2D complex tortuous fractured porous media. Journal of Petroleum Science and Engineering. 2020, 188: 106938.

26. Apparent gas permeability, intrinsic permeability and liquid permeability of fractal porous media: Carbonate rock study with experiments and mathematical modelling. Journal of Petroleum Science and Engineering. 2019, 173: 1304-1315.

27. A mathematical model for co-current spontaneous water imbibition into oil-saturated tight sandstone: Upscaling from pore-scale to core-scale with fractal approach. Journal of Petroleum Science and Engineering. 2019, 178: 376-388.

28. A more generalized model for relative permeability prediction in unsaturated fractal porous media. Journal of Natural Gas Science and Engineering. 2019, 67: 82-92.

29. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Results in Physics. 2019, 13: 102283.

30. Fractal Characterization of Tight Oil Reservoir Pore Structure Using Nuclear Magnetic Resonance and Mercury Intrusion Porosimetry. Fractals. 2018, 26(02): 1840017.

31. Fractal Analysis of Microscale and Nanoscale Pore Structures in Carbonates Using High-Pressure Mercury Intrusion. Geofluids. 2018, 2018: 4023150.

32. Fractal Analysis of Pore Structures in Low Permeability Sandstones Using Mercury Intrusion Porosimetry. Journal of Porous media. 2018, 21(11): 1097-1119.

33. An improved algorithm for unknown flow rate history reconstruction with the Haar wavelet transform. International Journal of Oil, Gas and Coal Technology. 2018, 19(1): 59-82.

34. A fractal model for low-velocity non-Darcy flow in tight oil reservoirs considering boundary-layer effect. Fractals. 2018, 26(5): 1850077.

35. A fractal permeability model coupling boundary-layer effect for tight oil reservoirs. Fractals. 2017, 25(05): 1750042.

36. Fracture and vug characterization and carbonate rock type automatic classification using X-ray CT images. Journal of Petroleum Science and Engineering. 2017, 153: 88-96.

37. Petrophysical properties analysis of a carbonate reservoir with natural fractures and vugs using X-ray computed tomography. Journal of Natural Gas Science and Engineering. 2016, 28: 215-225.

38. Continuous reservoir model calibration with time-dependent reservoir properties diagnosed from long-term down-hole transient pressure data. Arabian Journal of Geosciences. 2016, 9(4): 254.

39. Diagnostic of changes in reservoir properties from long-term transient pressure data with wavelet transform. Journal of Petroleum Science and Engineering. 2016, 146: 921-931.

40. Diagnosis of nonlinear reservoir behaviour for correctly applying the superposition principle and deconvolution. Journal of Natural Gas Science and Engineering. 2015, 26: 630-641.

41. Unknown Rate History Calculation from Down-hole Transient Pressure Data Using Wavelet Transform. Transport in porous media. 2013, 96(3): 547-566.

42. 基于深度学习的数字岩心图像重构及其重构效果评价. 中南大学学报(自然科学版), 2022, 53(11): 4412-4424.

43. 裂缝性油藏注气多相流动机理与气窜数学模型分析.非常规油气, 2022,9(04):58-64+122.

44. 基于机器学习和测井数据的碳酸盐岩孔隙度与渗透率预测. 吉林大学学报(地球科学版), 2022.

45. 致密油藏孔喉分布特征对渗吸驱油规律的影响. 岩性油气藏. 2021,33(02):155-162.

46. 微裂缝油-气-水多相流动力学机制与规律. 中南大学学报(自然科学版), 2021, 52(11): 3990-3998.

47. 低渗透/致密油藏驱替-渗吸数学模型及其应用. 石油学报. 2020, 41(11): 1396-1405.

48. 考虑滑脱效应与迂曲度分布特征的页岩复杂裂缝网络渗透率模型. 中南大学学报(自然科学版). 2020, 51, (12), 3454-3464.

49. 鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征. 吉林大学学报(地球科学版). 2020, 50(03): 721-731.

50. 基于数字岩心分形特征的渗透率预测方法. 吉林大学学报(地球科学版). 2020, 50(04): 1003-1011.

51. 基于高压压汞和核磁共振的致密砂岩渗透率预测. 岩性油气藏. 2020, 32(03): 122-132.

52. 致密砂岩分形渗透率模型构建及关键分形参数计算方法. 特种油气藏. 2020, 27(04): 73-78.

发明专利:

1. 驱油机理确定方法及系统,ZL201911354871.2.

2. 基于生成对抗神经网络的数字岩心重构方法及系统,ZL202010242671.4.

3. 基于表面活性剂自发渗吸的原油采收率预测方法及系统,ZL202011088558.1.

4. 裂缝渗吸原油产量预测方法及系统,ZL202010242099.1.

5. 储层裂缝渗吸质量预测方法及系统,ZL202010135002.7.

6. 基于双重介质的渗透率预测方法及系统,ZL201910851577.6

7. 垂向注气裂缝油气水微观渗流规律的预测方法及系统,ZL201910444322.8

8. 垂向注气孔隙油气水微观渗流规律的预测方法及系统,ZL201910445034.4

9. 岩心自发渗吸采收率预测方法及系统,ZL201910106402.2

10. 基于气水厚度分布的气水两相渗流规律预测方法及系统,ZL201910609566.7

11. 一种基于扫描图像判断碳酸盐岩孔隙类型的方法,ZL 201610112618.6

12. 一种获取致密油藏岩心的液体渗透率的方法及装置,ZL201710260055.X

13. 一种表征致密油藏低速非达西渗流特征的方法及装置,ZL201710684244.X

14. 一种生产井瞬时流量的计算方法,ZL201510323955.5

15. 一种基于小波变换来判断油藏物性参数是否变化的方法,ZL 201410549562.1

荣誉奖励:

1. 发明创业奖成果奖一等奖,排名第1

2. 海洋工程科学技术发明二等奖,排名第1

3. 中国石油和化学工业联合会科技进步奖二等奖,排名第3

4. 油气藏动态监测与管理国际会议优秀论文一等奖,排名第1

5. 《岩性油气藏》2021-2023年度最具影响力十佳论文,排名第1

6.北京科技大学优秀研究生指导教师团队

7.山东省优秀毕业生

8. 国家奖学金

学术兼职:

1. 中国科协“海智计划”特聘专家

2. Frontiers in Energy Research副主编,Petroleum Research编委

3. 首届《石油学报》、《中南大学学报(自然科学版)》、Petroleum Science青年编委

4. PNAS, SPE Journal, AAPG Bulletin, Water Resource Research, Physics of Fluids,《石油学报》、《中南大学学报(自然科学版)》等多个专业期刊审稿人

5. 教育部学位与研究生教育发展中心研究生学位论文通信评审专家

招生方向:

力学(流体力学),专业代码:080100。每年招收力学专业博士研究生1-2人,硕士研究生2-3人,欢迎有志从事力学、流体力学、地下能源开发与存储、人工智能交叉领域研究学生报考。

已指导毕业研究生20人,其中北京市优秀毕业生1人,校级优秀毕业生5人,5人获得国家奖学金。